扫码关注微信
订阅邮件
恭喜您,《中兴通讯技术》电子版订阅成功!

行业新闻

编委动态
会议信息

会议名称 会议时间 会议地点
IEEE Global Telecommunications Conference(Globecom) IEEE全球电信会议 2021/12/07 西班牙 马德里
SPIE Conference on Visual Communications and Image Processing(VCIP)SPIE视觉通信和图像处理会议 2021/12/05 德国 慕尼黑
IEEE International Conference on Image Processing( ICIP)图像处理国际会议 2021/09/19 美国 阿拉斯加
International Conference on Document Analysis and Recognition(ICDAR)文档分析和识别国际会议(每两年召开一次) 2021/09/05 瑞士 洛桑
IEEE International Conference on Acoustics, Speech and Signal Processing( ICASSP)声学、语音和信号处理国际会议 2021/06/06 加拿大 多伦多

本期推荐
智能超表面在智能高铁通信场景的应用探讨
作者:赵亚军,章嘉懿,艾渤
[简介]作为最具发展潜力的5G-Adv和6G关键技术之一,可重构智能表面(RIS)具有低成本、低复杂度和易于部署等特点,为发展智能高铁通信提供了新的契机。介绍了RIS辅助的智能高铁通信的典型应用,包括抑制多普勒频移效应、解决频繁切换问题、克服高穿透损耗问题和支持高精度列车定位。深入讨论了RIS辅助的智能高铁通信中的关键技术,包括信道测量与建模、信道估计与反馈、波束赋形、网络架构与部署。认为智能高铁新基建与RIS构建的电磁新基建的结合,未来将会给智能高铁带来广阔的技术及产业前景。
铁路新一代移动通信的挑战与思考
作者:钟章队,官科,陈为,艾渤
[简介]随着5G技术的发展,铁路新一代移动通信将面向铁路全场景、全业务、全链接、强安全,不仅有望完全取代既有系统,还能为列车自动驾驶、列车安全视频监控、列车状态监测与远程故障诊断、基础设施无线监控、应急作业处理、旅客信息服务等业务提供高速信息传输服务,是铁路物联网的信息承载平台和高速铁路运行安全保障的基础。感知-通信-计算一体化、数智融合、新型阵列理论、新材料物理电磁特性为铁路新一代移动通信发展提供前沿应用基础理论支撑;“大智移云物”技术群、区块链技术、高精度无线网络规划与优化、建筑信息模型(BIM)与增强现实(AR)融合技术以及数字孪生将为铁路新一代移动通信发展提供技术保障。在当前和未来的落地应用中,铁路新一代移动通信系统需要树立“可管、可控、可信、可视、可靠、可测”的六大设计理念,需要解决频率资源有限和新需求不断涌现之间的矛盾,高速移动性与可靠性问题,以及综合轨道交通枢纽集群与场景独特性带来的挑战,需要厘清在技术体制、公专共存、异构网络协同等方面存在的开放性问题。
RecCac: Recommendation Empowered Cooperative Edge Caching for Internet of Things
HAN Suning, LI Xiuhua, SUN Chuan, WANG Xiaofei, Victor C. M. LEUNG
[Introduction]Edge caching is an emerging technology for supporting massive content access in mobile edge networks to address rapidly growing Internet of Things (IoT) services and content applications. However, the edge server is limited with the computation/storage capacity, which causes a low cache hit. Cooperative edge caching jointing neighbor edge servers is regarded as a promising technique to improve cache hit and reduce congestion of the networks. Further, recommender systems can provide personalized content services to meet user’s requirements in the entertainment-oriented mobile networks. Therefore, we investigate the issue of joint cooperative edge caching and recommender systems to achieve additional cache gains by the soft caching framework. To measure the cache profits, the optimization problem is formulated as a 0–1 Integer Linear Programming (ILP), which is NP-hard. Specifically, the method of processing content requests is defined as server actions, we determine the server actions to maximize the quality of experience (QoE). We propose a cachefriendly heuristic algorithm to solve it. Simulation results demonstrate that the proposed framework has superior performance in improving the QoE.
Cost-Effective Task Scheduling for Collaborative Cross-Edge Analytics
ZHAO Kongyang,GAO Bin,ZHOU Zhi
[Introduction]Collaborative cross-edge analytics is a new computing paradigm in which Internet of Things (IoT) data analytics is performed across multiple geographically dispersed edge clouds. Existing work on collaborative cross-edge analytics mostly focuses on reducing either analytics response time or wide-area network (WAN) traffic volume. In this work, we empirically demonstrate that reducing either analytics response time or network traffic volume does not necessarily minimize the WAN traffic cost, due to the price heterogeneity of WAN links. To explicitly leverage the price heterogeneity for WAN cost minimization, we propose to schedule analytic tasks based on both price and bandwidth heterogeneities. Unfortunately, the problem of WAN cost minimization underperformance constraint is shown non-deterministic polynomial (NP)-hard and thus computationally intractable for large inputs. To address this challenge, we propose price- and performanceaware geo-distributed analytics (PPGA) , an efficient task scheduling heuristic that improves the cost-efficiency of IoT data analytic jobs across edge datacenters. We implement PPGA based on Apache Spark and conduct extensive experiments on Amazon EC2 to verify the efficacy of PPGA.
©1998-2020 中兴通讯股份有限公司 版权所有   粤ICP备11108162号